---
title: "examples"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{examples}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
```{r setup}
library(uxr)
```
# Compare Probability of an Event with Benchmark
```{r}
data <- data.frame(task_1 = c("y", "y", "y", "y", "n", "n", "n", NA, NA, NA, NA, NA, NA, NA),
task_2 = c(0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1))
## with dataframe column
benchmark_event(data,
column = task_1,
benchmark = 0.8,
event = "y")
```
```{r}
benchmark_event(data,
column = task_2,
benchmark = 0.3,
event = 1,
event_type = "success")
```
```{r}
## pipeable
data |>
benchmark_event(column = task_2,
benchmark = 0.3,
event = 1,
event_type = "success")
```
```{r}
# specify `input = "values` to use with direct values
benchmark_event(benchmark = 0.8,
count = 9,
total = 11,
input = "values")
```
```{r}
# get confidence intervals
# test_wald_adj(10, 12)
```
# Compare Score with a Benchmark
```{r}
scores <- 80 + 23 * scale(rnorm(172)) # 80 = mean, 23 = sd
data <- data.frame(scores = scores)
```
```{r}
# with dataframe column
benchmark_score(data, scores, 67)
```
```{r}
# pipeable
data |> benchmark_score(scores, 67)
```
```{r}
# specify `input = "values` to use with direct values
benchmark_score(mean = 80,
sd = 23,
n = 172,
benchmark = 67,
input = "values")
```
# Compare Time with a Benchmark
```{r}
data <- data.frame(time = c(60, 53, 70, 42, 62, 43, 81))
benchmark_time(data, column = time, benchmark = 60, alpha = 0.05)
```
# Compare Means Between Groups
```{r}
# Wide data - default
data_wide <- data.frame(A = c(4, 2, 5, 3, 6, 2, 5),
B = c(5, 2, 1, 2, 1, 3, 2))
compare_means_between_groups(data_wide, var1 = A, var2 = B)
```
```{r}
# Long data
data_long <- data_wide |> tibble::rowid_to_column("id") |>
tidyr::pivot_longer(cols = -id, names_to = "group", values_to = "variable")
compare_means_between_groups(data_long,
variable = variable,
grouping_variable = group,
groups = c("A", "B"),
input = "long")
```
```{r}
A <- 51.6 + 4.07 * scale(rnorm(11))
A <- c(A, NA)
B <- 49.6 + 4.63 * scale(rnorm(12))
data <- data.frame(A, B)
compare_means_between_groups(data, A, B)
```
# Compare Means Within Groups
```{r}
data <- data.frame(id = c(1:7), task1 = c(4, 1, 2, 3, 8, 4, 4), task2 = c(7, 13, 9, 7, 18, 8, 10))
compare_means_within_groups(data, task1, task2)
```
# Compare Rates Between Groups
```{r}
design = c("A","B")
complete = c(10, 4)
incomplete = c(2, 9)
data <- data.frame(design, complete, incomplete)
data <- data |> tidyr::pivot_longer(!design, names_to = "rate", values_to = "n") |>
tidyr::uncount(n)
compare_rates_between_groups(data, group = design, event = rate)
```
# Compare Rates Within Groups
```{r}
A <- c(1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1)
B <- c(0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0)
data <- data.frame(A, B)
compare_rates_within_groups(data, A, B, input = "wide")
```